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The anisotropy of free path in a vibro-fluidized granular gas∗
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The free path of a vibro-fluidized two-dimensional (2D) inelastic granular gas confined in a rectangular box is inves-
tigated by 2D event-driven molecular simulation. By tracking particles in the simulation, we analyze the local free path.
The probability distribution of the free path shows a high tail deviating from the exponential prediction. The anisotropy of
the free path is found when we separate the free path to x and y components. The probability distribution of y component is
exponential, while x component has a high tail. The probability distribution of angle between the relative velocity and the
unit vector joined two particle centers deviates from the distribution of two random vectors, indicating the existence of the
dynamic heterogeneities in our system. We explain these results by resorting to the kinetic theory with two-peak velocity
distribution. The kinetic theory agrees well with the simulation result.
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1. Introduction
Granular gases,[1,2] known as rapid granular flows, re-

fer to the fact that macroscopic grains interact via instanta-
neous inelastic collisions. The granular gas is widespread not
only in nature, such as interstellar dust, planetary rings, and
avalanches, but also in the industry where the granular media
are fluidized by shear, vibration or gravity. Given the presence
of inelastic collision, it is different from the molecular gas by
nature, featuring non-Maxwell velocity distribution, inhomo-
geneous density distribution (clustering and patterns), and lack
of energy equipartition.[3,4] In particular, the velocity distribu-
tion of granular gases shows exponential distribution as con-
firmed in experiments[5–7] and simulations.[8] Two peaks of lo-
cal velocity distribution were further found in simulation[8–10]

and also in micro-gravity experiments.[11,12] In greater detail,
the local velocity distributions of the vibration direction show
two peaks in the marginal layer, melting into one peak in the
box center, as demonstrated by the relevant skewness. All
these suggest a granular gas may not reach fast local equi-
librium. In order to study such non-equilibrium systems, we
need to start from certain basic issues. The collision statistics,
especially free path length or free flight time, which is useful
in estimation of transport coefficient and the energy loss for
granular gases, is supposed to be one of them.

The mean free path[13,14] is normally applied to character-
ize free path lengths. It is defined as the average distance that a
molecule travels between successive collisions. It is a critical
criterion that determines whether the granular dynamics can

be described by the hydrodynamics or not[13,15] for granular
gases. Besides, it can be used to calculate the transport prop-
erty for granular media, such as viscosity.[8,14] The classical
mean free path of molecular gases could be derived strictly
from the Maxwell velocity distribution. Grossman et al.[16]

gave mean free path expressions for granular gases in the low
and high density limits in nearly elastic conditions. The low
density expression is the same as the mean free path of molec-
ular gases, while the high density one is deduced based on the
close-packing density. In the above derivation, an important
assumption is the molecular chaos (Stosszahlansatz), which
supposes the velocity between two colliding particles is un-
correlated. Further, Brey et al.[8] used the local mean free path
replacing the coordinate to obtain the spatial profiles of tem-
perature for a granular gas fluidized by a vibrating wall and a
reflecting one, then built a relationship between the velocity of
the wall and the hydrodynamic profiles.

However, the free path in dissipated granular gases is dif-
ferent from that in elastic gases,[17–19] since the assumption of
molecular chaos is based on the local equilibrium. For exam-
ple, Blair and Kudrolli[17] reported an experiment of collision
statistics of vibro-fluidized granular particles on an inclined
plane. The distribution of the free path lengths does not fol-
low a simple exponential form on density which is derived by
the basic kinetic theory. Visco et al.[18] studied the proba-
bility distribution of the free flight time and the number of
collisions in a hard sphere gas at equilibrium with three sim-
ulation methods, the Molecular Dynamics, Direct Simulation
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Monto Carlo, and Monte Carlo family. The results showed
that the number of collision deviates from Poissonian statis-
tics, whereas the probabilistic ballistic annihilation model[19]

was found to be able to well explain the simulation results.
Tan and Goldhirsch[20–23] studied the mean free path in a uni-
form shear flow, elucidating that the dimensional shear rate is
not small even for strong dissipation and the ‘true’ mean free
path is larger than that in equilibrium state. It is worth noting
that the non-equilibrium features of dissipative granular gases
are not fully considered in these works. For example, the two-
peak local velocity distribution, as discussed above, has not
been taken into account in their analysis.

To introduce the non-equilibrium feature into the analysis
of the mean free path, in this work, we first present the event-
driven molecular simulation method, in which the two-peak
local velocity distributions are emphasized. Then the spacial
profiles and the probability distribution of free path lengths,
the probability of collision angles and the probability distri-
bution of the components of free path lengths are presented.
Based on two-peak velocity distribution model, the kinetic ex-
pression of the local free path is finally given. Comparison
between our theory and simulation results are also discussed.

2. Model and simulation analysis
Granular gases consisting of N inelastic 2D particles

(disks) with monodisperse diameter d = 1 and mass m = 1 are
studied in a rectangular box. Figure 1 presents the schematic
illustration of our simulation. The idealized sawtooth manners
presented in Ref. [9] are adopted for initial distribution of disks
in y direction. If the velocities of the disks before collision are
𝑣1 and 𝑣2 and after collision 𝑣′1 and 𝑣′2, let 𝑣12 and 𝑣′12 be the
relative velocities of the disks before and after collision, then
an inelastic collision satisfies that

𝑘 ·𝑣′12 =−e(𝑘 ·𝑣12), (1)

where 𝑘 denotes the unit vector directed from the center of the
second disk to that of the first one, e is the restitution coeffi-
cient with the range [0, 1].

y

x

Fig. 1. (color online) The schematic illustration of our simulations.[10]

To drive the disks, we adopt the method used in Ref. [9], a
sawtooth driving wall with vanishing amplitude A and diverg-
ing frequency ν in x direction. So each disk colliding with the
wall has the post-collision velocity:

𝑣′ = 𝑣+∆𝑣pw, (2)

where

∆𝑣pw = (−2vx± vdrive)𝑘x, (3)

and 𝑘x is the x component of 𝑘. To obtain the asymptotic dy-
namics of these fitting parameters, we use a coarse graining
method.[23] The coarse graining function, Φ(𝑅), defines spa-
tial “windows” with width δx = Lx/270 (270 strips are fixed
in all simulations, so δx are changed according to Lx) along
x direction and length δy = Ly along y direction. The “win-
dow” moves step-by-step along y direction (here, the step size
is 1), which means “windows” overlapping one with another.
All the particles appearing in one “window ” count towards
the total amount. In our case, there are 270 windows in x axis.
For instance, when Lx = 300, Φ(𝑅) begins from x ⊆ [0 30],
then [1 31], . . . , until [270 300]. It needs to be emphasized
that our results are obtained from the simulation. When one
disk collides with another, its positions are stored. Once the
next collision happens, the free path can be calculated directly
from the last collision position.
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Fig. 2. (color online) Three-dimensional (3D) probability distribution
of the velocity. Lx = Ly = 300, e = 0.9, N = 1000, Vdriven = 10.

As in Ref. [11], we measure the local velocity distribu-
tion in each window which moves from the left side to the
right side of the box. The three-dimensional plot of the local
velocity distributions p(vx) and p(vy) are illustrated for an in-
elastic case with N = 1000, e = 0.9 in Fig. 2. Our simulation
results are consistent with the experimental[11] and previous
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simulation results.[8–10] Anisotropy refers to the property of
the directional dependence, which could be clearly observed
in Fig. 2. p(vy) in all the layers show symmetry, while two
peaks appear in the boundary layer for p(vx), one correspond-
ing to positive velocity and the other negative, then melt to
one peak when the location moves to the box center. The su-
perposition of two Maxwellian distributions can be supposed
to describe this local velocity distribution in such system as in
our previous work.[12]

3. The distribution of free path lengths
For a molecule moving in an irregular, zigzag path, the

mean free path, λ , is expressed in terms of the number den-
sity and diameter. For granular gases, two situations[16] are
usually included for two-dimensional nearly elastic hard disk
gases: in the low density limit, λ is given by

λl =
1√
8ρd

(4)

and in the high density limit, it has

λh =
ρc−ρ

2ρc
d, (5)

where ρc is the close packing density given by ρc = 2/(
√

3d2),
ρ is the local number density and d is the diameter of the disk.
Equation (4) is the same as the molecular dynamic theory.

Both equations (4) and (5) are related to the density, so we
firstly show the spacial profiles of the local density in Fig. 3.
We could find the local dependence of density on the resti-
tution coefficient. Figure 4 illustrates the spatial profiles of

the local free path in our simulation using the coarse grain-
ing method for two cases, one is nearly elastic (e = 0.99), the
other is inelastic (e = 0.9). The results from Eq. (4) are also
given for comparison. The area fraction is φ = πd2N/4LxLy =

0.034, and the global mean free path calculated from Eq. (4)
or the molecular gases is λl = 1/

√
8ρd = 31.8. It is pretty

clear that the local free path deviates from the mean one, es-
pecially for the inelastic case. In general, the coarse graining
simulation results are closer to the prediction of Eq. (4), but
difference still exists especially in the boundary layer. Dis-
sipative collisions cause inhomogeneous distinction of parti-
cles and dense accumulation in the central area. Thus λ drops
when leaving the boundary. This trend is more significant for
the inelastic case of e = 0.9.
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Fig. 3. (color online) The spatial profiles of number density ρ with
different restitution coefficient (e = 0.99 and e = 0.9), Lx = Ly = 300,
N = 1000, Vdriven = 5.
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Fig. 4. (color online) The spatial profiles of local free path λ , for (a) e = 0.99 and (b) e = 0.9. Other parameters are Lx = Ly = 300,
N = 1000, Vdriven = 5.

According to the kinetic theory, the distribution of free
paths for nearly elastic particle is given by

P(λ ) = (2
√

2φ)e−2
√

2φλ . (6)

It indicates that P(λ ) follows an exponential distribution re-

lated to the area fraction. The previous results[17] of in-

clined plane experiment show P(λ ) is inconsistent with Eq. (6)
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largely. For our case, P(λ ) decreases with the free path length
on semi-log coordinate as presented in Fig. 5. It is pretty clear
that our results cannot be described by Eq. (6) either. The in-
set with double logarithmic coordinates shows this curve and
a solid line of exponential fitting. We could find the short
path length still follows an exponential distribution, while the
longer path length diverges greatly. This is expected because
the larger free path involves boundary heating that brings de-
viation. In Ref. [17], only the central area of the vibrated cell
are analyzed, so its boundary effect is omitted. That is why
their results could still be fitted with an exponential function.
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Fig. 5. (color online) The probability distribution of free path lengths
P(λ ), where e = 0.9, Lx = 600, Ly = 300, N = 1000, Vdriven = 5.

Further, we analyze the probability distribution of the an-
gle between the relative velocity, 𝑐12, and the unit vector join-
ing the centers of two particles, 𝑘, in Fig. 6. The distribution
of angles for two random vectors in α dimensional space[24]

is given by

P(θ) =
1√
π

Γ

(
α

2

)
Γ

(
α−1

2

) (sin(θ))α−2, θ ∈ [0,π]. (7)

For two-dimensional cases, P(θ) is constant over [0,π], indi-
cating that P(θ) = 1/180◦ = 0.0055 in angle coordinate. For
our case, P(θ) = 1/90◦ = 0.011 according to Eq. (7). How-
ever, our results clearly show angle distribution is not uniform
in various restitution coefficients, as shown in Fig. 6. The
probability decreases with the collision angle, which means
more collisions happen when θ is smaller. If we assume the
direction of 𝑘 is random, then figure 6 implies the relative ve-
locity 𝑐12 is not isotropic. The probability of direct impact
is higher than the oblique impact, implying the existence of
the dynamic heterogeneities in our system. In fact, this has
already been confirmed in Ref. [10].

Considering the anisotropy due to boundary heating, we
further investigate the anisotropic distribution of free path
lengths and compare the x and y components of free path as

shown in Fig. 7. Here, we have λ =
√

λ 2
x +λ 2

y . P(λy) follows
the exponential distribution as shown linear in the semi-log
coordinate, which is consistent with the kinetic theory argu-
ment. However, P(λx) deviates greatly from the expected. So
the distribution of the total free path lengths P(λ ) is no longer
exponential. This clearly results from the boundary effect in x
axis. As shown in our previous work,[12] boundary effect leads
to two-peak local velocity distribution, and of course leads to
anisotropy of the free path lengths.
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Fig. 6. (color online) The probability of collision angle P(θ), where θ

is the angle between the relative velocity and line of centers of a couple
of particles upon collision, and e = 0.99,0.9, Lx = Ly = 300, N = 1000,
Vdriven = 5.
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Fig. 7. (color online) The probability distribution of free path lengths P(λ )
and its x and y components, P(λx) and P(λy), where e = 0.9, Lx = 600,
Ly = 300, N = 1000, Vdriven = 5 on semi-log coordinate and inset: log–log
scale.

4. The kinetic theory description
As presented in Section 2, the non-Maxwellian distribu-

tion can be described with a two-peak velocity distribution as
shown in Fig. 2, then it is convenient to calculate the local free
path according to the kinetic theory and give an explanation[25]

based on the two-peak velocity distribution for the longer free
path.
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We suppose the velocity distribution function is bimodal,
which can be written as:

fx(𝑐,𝑟) =
npmp

2πTp
exp
[
−

mp(𝑐p−𝑢p)
2

2Tp

]
+

nnmn

2πTn
exp
[
− mn(𝑐n−𝑢n)

2

2Tn

]
, (8)

where subscript p denotes the positive component, while n
represents the negative one. Tp and Tn are the granular tem-
peratures defined as Tp = 〈∑(v+x )

2〉 and Tn = 〈∑(v−x )
2〉, 𝑢p

and 𝑢n are the mean velocities defined as 𝑢p = 〈v+x 〉 and
𝑢n = 〈v−x 〉. Then, the collision frequency between any of two
particles 1 and 2 is

Ni j =
∫∫

f 2
i j(𝑐1i,𝑟i,𝑐2 j,𝑟 j)(𝑐21, ji ·𝑘)di jd𝑘d𝑐1i d𝑐2 j, (9)

where i and j could be positive or negative components. Let
the relative velocity of the particles be

𝑐 ji = 𝑐 j−𝑐i (10)

and the mass center velocity be

𝐺=
1

m0
(m j𝑐 j +mi𝑐i), (11)

where m0 = mi +m j, di j = (di +d j)/2. Considering the parti-
cle motion is two-dimensional, so∫

𝑐 ji·𝑘>0
𝑐 ji ·𝑘d𝑘 = 2c ji, (12)

where 𝑐 ji ·𝑘 > 0 is to make sure a collision will happen.
When 𝑣i and 𝑣 j are substituted by 𝐺 and 𝑐 ji, the fre-

quency of collision is expressed as

Ni j =
∫∫ 2nin jmim jdi j

(2π)2TiTj

× exp(−A𝐺2−D𝑐2
i j−2B𝐺 ·𝑐 ji

−𝐸 ·𝐺−𝐹 ·𝑐 ji−H) (13)

×c ji d𝑐 ji d𝐺.

Then expanding it by Taylor series and keeping only the linear
terms, the solution of Eq. (13) is

Ni j =
nin jmim jdi j

TiTj

√
π

4AD3/2 e−H
[

1+
3B2

2AD

]
, (14)

where

A =
miTj +m jTi

2TiTj
, B =

mim j(Ti−Tj)

2m0TiTj
, (15)

D =
mim j(miTi +m jTj)

2m2
0TiTj

, 𝐸 =
mi

Ti
𝑢i +

m j

Tj
𝑢 j, (16)

𝐹 =
mim j

m0

(
𝑢i

Ti
−

𝑢 j

Tj

)
, H =

mi

2Ti
𝑢2

i +
m j

2Tj
𝑢2

j . (17)

For our monodisperse case, the masses of species 1 and 2 are
equal to each other, then the expression of Ni j can be reduced
to

Ni j =
8
√

2πdi jnin j(TiTj)
3/2

(Ti +Tj)5/2 exp
[
−1

2

(
u2

i
Ti

+
u2

j

Tj

)]
×
[

1+
3(Ti−Tj)

2

2(Ti +Tj)2

]
. (18)

When Ti = Tj and 𝑢i = 𝑢 j = 0, the expression reduces to that
for the molecular gases mixture in Ref. [26] for two dimen-
sional gas.

Then we can calculate the local free path based on
Eq. (18). The one for the positive direction is

λp = np𝑢p/(Npp +Npn). (19)

So the negative mean free path is

λn = nn𝑢n/(Nnn +Npn). (20)

According to the coarse-graining simulation results, 𝑢p and
𝑢n are normally small, especially in the box center. For the
sake of simplicity, we assume 𝑢p = 𝑢n = 0 and do not take
into account the high-order expanded terms in Eq. (18).
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Fig. 8. (color online) Parametric plots of Eq. (19) λp and Eq. (20) λn,
compared with the coarse-graining simulation results with parameters
Lx = Ly = 300, e = 0.9, N = 1000, Vdriven = 5.

Figure 8 compares the local free path from our simula-
tion with that from Eq. (19) and Eq. (20), which shows good
agreement. Compared to Fig. 2, the prediction based on the
two-peak velocity distribution model is much better than that
based on the Maxwellian distribution, showing the effect of
the non-equilibrium state in granular gases.

Although equations (19) and (20) better explain the lo-
cal free path in both positive and negative directions, small
deviation still persists in the boundary layer. A possible rea-
son is attributed to inhomogeneous collision angle. From the
above deduction, we could find that equation (12) assumes the
spatial distribution of all particles are homogeneous, then we
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can do spatial integral. However, when one velocity compo-
nent is greater than the other one, the collision angle becomes
smaller. Let us consider an extreme case, when vy = 0, all the
particles move in x direction. Then collisions only happen in
x direction, the collision angle is zero. In more general cases,
vy � vx, then collisional cylindrical volume swept out by the
sphere will not be zig–zag but cling to x axis. Equation (12)
does not take into account such inhomogeneous collision an-
gle.

In all, our results evidence another mesoscopic nature
of the granular gas. As mentioned in the shear granular
system,[20] a mesoscopic system is different from the macro-
scopic one, particularly in average properties, so is the mean
free path. The mean free path is obscure in such systems. The
effect of boundaries is of much more importance in a granular
system than in an elastic one. The asymmetric local velocity
distribution implies the local mean free paths of positive and
negative are different. Our results support this original hypoth-
esis.

5. Conclusion

In this study, we focus on the local free path of vibrated
granular gases through event-driven molecular dynamic sim-
ulation. The results demonstrate the local free path of gran-
ular gases is very different from the classical prediction. The
probability distribution of the free path does not follow an ex-
ponential distribution expected by the classical elastic kinetic
theory. Instead, anisotropy of the free path is found where the
non-vibrating direction component of the probability of free
path lengths is still exponential, while the vibrating direction
component has a high tail. The probability distribution of an-
gle between the relative velocity and the unit vector directed
two particle centers disagrees with the distribution of two ran-
dom vectors. Using the two-peak velocity distribution, we pro-
vide an expression of the free path based on the kinetic theory,

which shows the local free path is related not only to the num-
ber density, but also to the granular temperature. The two-
peak model results agree well with simulation, demonstrating
the effect of non-equilibrium distribution. Future work will be
directed to the experimental measurement of the free path and
the mechanism underlying the two-peak distribution.
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